Finding strong defining hyperplanes of production possibility set with stochastic data
نویسندگان
چکیده
The production possibility set (PPS) is defined as the set of all inputs and outputs of a system in which inputs can produce outputs. In data envelopment analysis (DEA), identification of the strong defining hyperplanes of the empirical production possibility set (PPS) is important, because they can be used for determining rates of change of outputs with change in inputs. Also, efficient hyperplanes determine the nature of returns to scale, and also is important for defining a suitable pattern for inefficient DMUs. As we know, stochastic data are one of the different kinds of data that show some uncertainty in inputs and outputs. Therefore we apply an algorithm for transforming stochastic models in to linear models using Production Possibility Set (PPS). In this paper, we deal with the problem of finding the strong defining hyperplanes of the PPS with stochastic data. A numerical example shows the reasonability of our method.
منابع مشابه
finding the defining hyperplanes of production possibility set with variable returns to scale using the linear independent vectors
The Production Possibility Set (PPS) is defined as the set of all inputs and outputs of a system in which inputs can produce outputs. In Data Envelopment Analysis (DEA), it is highly important to identify the defining hyperplanes and especially the strong defining hyperplanes of the empirical PPS. Although DEA models can determine the efficiency of a Decision Making Unit (DMU), but they...
متن کاملFinding strong defining hyperplanes of Production Possibility Set
The production possibility set (PPS) is defined as the set of all inputs and outputs of a system in which inputs can produce outputs. In data envelopment analysis (DEA), identification of the strong defining hyperplanes of the empirical production possibility set (PPS) is important, because they can be used for determining rates of change of outputs with change in inputs. Also, efficient hyperp...
متن کاملFinding stability regions for preserving efficiency classification of variable returns to scale technology in data envelopment analysis
This paper addresses issue of sensitivity of efficiency classification of variable returns to scale (VRS) technology for enhancing the credibility of data envelopment analysis (DEA) results in practical applications when an additional decision making unit (DMU) needs to be added to the set being considered. It also develops a structured approach to assisting practitioners in making an appropria...
متن کاملDetermination of Defining Hyperplanes of Dea Production Possibility Set
The ability of determining all defining hyperplanes of DEA production possibility set (efficient frontier) prior to the DEA computations is of extreme importance. Specially, access to efficient frontier permits a complete analysis (e.g. calculation of efficiency scores, returns to scale, sensitivity analysis and so on) in second phase for the corresponding model. This paper presents a linear sy...
متن کاملCreating Full Envelopment in Data Envelopment Analysis with Variable Returns to Scale Technology
In this paper, weak defining hyperplanes and the anchor points in DEA, as an important subset of the set of extreme efficient points of the Production Possibility Set (PPS), are used to construct unobserved DMUs and in the long run to improve the envelopment of all observed DMUs. There has been a surge of articles on improving envelopment in recent years. What has been done first is in Constant...
متن کامل